Land evaluation and suitability of Hala'ib and Shalateen region, Egypt, by integrated use of GIS and remote sensing techniques.

Farag O. Hassan¹, Ali A. Abdel Salam², Heba S. A. Rashed² and Abdallah M. Faid¹

¹National Authority for remote sensing and Space Science, (NARSS), Cairo, Egypt.

²Soil and Water Department, Faculty of Agriculture, Moshtohor, Benha University, Egypt.

Corresponding author: Faragomar25@yahoo.com

Abstract

Land suitability and capability evaluation was done by integrating remote sensing and GIS techniques for Hala'ib and Shalateen region which are located south east of the eastern desert of Egypt. The regions are of high priority for development. Ten soil profiles were taken to represent the main geomorphic units in the study area. Topographic maps, field work observations and digital elevation model (DEM) were used to generate the geomorphologic map. Eight main geomorphologic units were identified i.e wadis, 2- alluvial fans and deltas, 3- alluvial plains, 4- sand sheets, 5- sand dunes, 6- alkali flats (sabkhas), 7- plains with rock outcrops and 8- high rocky lands. Land capability evaluation was performed using Micro-LEIS-Cervatana capability model. Percentages of land capability were as follows 8.50% "good of use", 24.72% "moderate use", 9.14% "marginal or non-productive"; 57.7% "rocky and erosion-risk". The main capability limitations are soil erosion risks and rockiness. The Micro-LEIS-Almagra model was used to produce the optimum cropping pattern and limitations of soil units. Land suitability using the Micro-LEIS-Almagra program showed suitability for wheat, potato, maize and sugar beet (as annuals); alfalfa (as semi-annuals), peach, citrus fruits and olive (as perennials). Main limitations include salinity, sodicity, shallowness, rockness and inadequate drainage and low fertility.

Keyword: Land capability, Land suitability, Remote sensing, GIS, Hala'ib and Shalateen region.

Introduction

Land evaluation is the assessment of land performance for its use specific purpose (FAO, 1985 and Sys et al., 1991). It interprets the principal inventories of soil properties, vegetation cover, climate, environmental conditions, and other aspects (Dent and Young, 1981; FAO, 1983; Sys, 1993; Rossiter, 1996 and Sayed, 2006). It explains and predicts land potential use (Van Lanen, 1991). Evaluation involves the technical coefficients necessary for optimal allocation (Rossiter, 1996). Two major aspects are involved, i.e. physical resources and socio-economic resources (FAO, 1985; Sys, 1985; and Várallyay, 2011). Physical resources concern aspects such as soil, topography and climate, which have relatively stable properties. Socio-economic resources concerns aspects such as farm size, management level, availability of manpower, market position and human activities. They are affected by the social, economic, and political decisions. The main objective for land evaluation is appraisal of land's potential for alternative uses by a systematic comparison of its requirements with its resources (Dent and Young, 1981). Land evaluation procedures show what is wrong with the land in its current use, what and where the conflicts are (De la Rosa et al., 2004). Computer programs are used in evaluation of land use. Computerized models can integrate socioeconomic and biophysical factors to fulfill the appraisal within a specific timeframe, and distribute insights for future appraisals. However, such models may be expensive, time-consuming and eliminate needed resources from other planning activities. Computerized systems vary on their basis of purpose, their use, andthe required data. There are many of these systems, such as APT(Agricultural Planning Tool-kit), CRIES (Comprehensive Inventory and Evaluation System), LECS (Land Evaluation Computer System), ALES(Automated Evaluation System) Land MicroLEIS(Microcomputer Land Evaluation Information System) (Kalogirou, 2002 , Elaalem, 2010 and Rossiter, 1990). The ALES system is a framework for evaluators to build their own expert system, with many applications. The MicroLEIS system aims at establishing an interactive friendly procedure for optimal allocation of land use and define production levels for arable crops and forests under Mediterranean conditions (De la Rosa and Moreira, 1987). This system includes several biophysical evaluation methods which appropriate agricultural and forestry land uses in Mediterranean regions. De la Rosa et al., (2004) used scale-appropriate models ranging from purely qualitative (reconnaissance) scales through semiquantitative (semi-detailed) scales to quantitative (detailed) scales.

Land suitability classification is appraising assessment of land for its use for specific crops or otherwise. Qualitative suitability classification in an empirical assessment based on assumed relationships several land characteristics that influence, a specific land use (FAO, 1976). Land suitability classification is useful for precision land utilization. It cloud be

expressed not only in terms of types of crop production, but also in terms how they are done(Sys et al., 1991). Land suitability takes into consideration environmental variables such as topography, soil type, vegetation and landforms. Integration of various variables for a single assessment utilizes the GIS "Geographic Information System" (Pereira and Duckstein 1993; Steiner et al., 2000 and Zhang et al., 2011).Land capability was applied to determine potentiality for agriculture in Wadi Hodein, Eastern Desert, Egypt limiting factors and showed that the limiting factors are: water resources, climate and texture (El-Taweel, 2006). Abdel-Kawy et al. (2010) stated that the use of ALES arid-model in arid and semi-arid regions facilitates finding of the most suitable agriculture system to be adopted.

Remote sensing imagery is a powerful tool for studying the surface of Earth (Rozenstein et al., 2016), and covers large areas with multiple spectra information and constant observations(Mulder et al.,2011 and Taghizadeh-Mehrjardi et al., 2014). It is an important technique for soil survey, mapping and environmental investigations(Sadeghi et al., **2015**). The Geographic Information System (GIS) incorporates database systems for spatial data (Ekanayaki and Dayawansa, 2003).It incorporates remote sensing data with soil survey information GIS to assess crop suitability. Integration of various variables for a single assessment cannot result in accurate and efficient results unless the GIS is used. (Steiner et al., 2000; Zhang et al., 2011 and Abdel Rahman et al., 2016).

The main objective of the current work was to identify and evaluate land resources of Hala'ib and Shalateen, regions in the South Eastern Desert, Egypt and formulate suitability maps for crops using the MicroLEIS and the GIS systems.

Materials and Methods

The study area.

The study area is located in the south east desert of Egypt between latitudes 22 ° 10 `50`` and 23 ° 31 ` 41.5`` N, and longitudes 34 ° 45 ` 4.4`` to 36 ° 19 ` 4.6` E, (Figure 1) with a total area of about 1718100 ha. According to EMA (2010), the area is nearly totally arid with less than 0.5mm annual rainfall and with an annual temperature of 24°C, having a wide difference between summer and winter. The average temperature ranges between 18.92 °C to 30.38 °C. The highest monthly average temperature is 37.5°C in July and August, while the lowest is 7.5 °C in January. Average annual relative humidity is 39.10 % and average monthly relative humidity ranges between 26.00% in July and 55.00% in January and February. Figure 2 shows the climate diagram of Hala'ib and Shalateen.

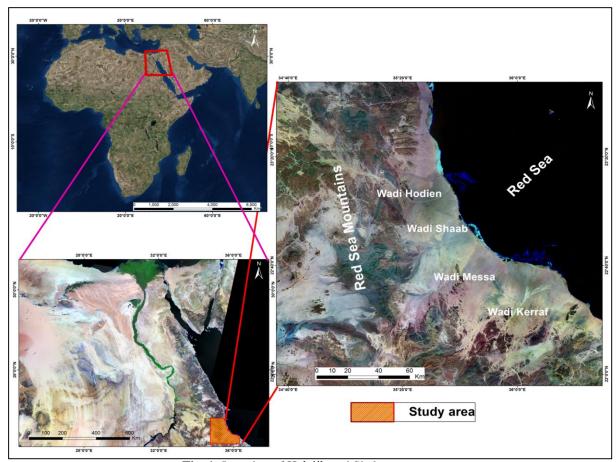


Fig. 1: Location of Hala'ib and Shalateen area.

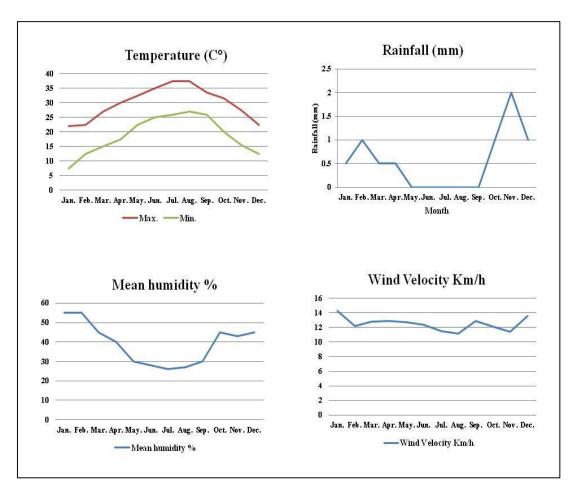


Fig. 2: climatologically diagram of Hala'ib Shalateen.

Geology.

According to Said (1990), El-Rakaiby et al., (1996), El-Alfi, (1997) and EGPA(1987) the regoins are occupied by fourteen rock formations belonging to Precambrian, Cretaceous, Miocene, and Quaternary ages. The formations (Figure 3) are: (1) Basement Rocks, (2) Tertiary Volcanic, (3) Sand

Dunes, (4) Sand Sheets, (5) Sabkha deposits, (6) Wadi deposits, (7) Undifferentiated Quaternary Deposits, (8) Shagra formation "Fm"., (9) Umm Gheig Fm., (10) Umm Mahara Fm., (11) Undifferentiated Miocene Deposits, (12) Umm Barmil Fm., (13) Timsah Fm. and (14) Abu Aggag Fm.

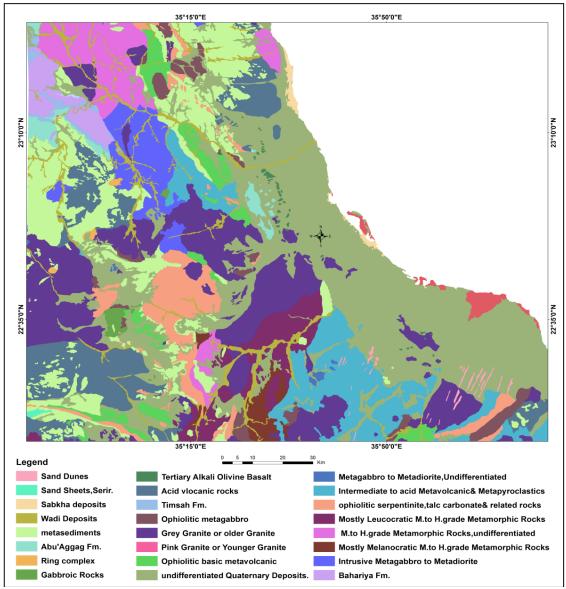


Fig. 3: Geological map of Hala'ib and Shalateen area (After EGPA, 1987).

Image processing.

Remote sensing analyses of the area used data from Landsat Data Continuity Mission (LDCM) sensor (Landsat 8) in 2016. All further digital image processing and analyses were executed using the standard approaches provided by the ENVI 5.1 and the Arc-GIS 10.1 software. Image processing included bad line manipulations by filling gaps module designed using IDL language and data calibration to radiance according to **Lillesand and Kiefer (2007).**

Soil classification

Based on to climatic data(EMA, 2010), the soil temperature regime of the studied area was defined as *thermic* and the soil moisture regime was defined as *torric* on basis of classification of the USDASoil Taxonomy System (USDA 2014). Soils were classified under two soil orders, *Aridisols* and *Entisols*.

Soil survey and field work

A semi detailed survey was carried out. One profile pit was dug representing each major soil type, since the soils have been identified as benchmark soils. Ten soil profiles were observed and the morphological features were outlined according to the FAO guidelines (FAO,2006).

Laboratory analyses

Soil samples were air-dried ground and sieved through a 2-mm sieve and analyses were done including particle size distribution, salinity, pH, calcium carbonate (g/kg), gypsum (g/kg) and CEC (USDA 2004 and Bandyopadhyay 2007)

Land evaluation and suitability.

Land evaluation(in terms of land capability) was done using the MicroLEIS-CERVANTANA model while land suitability was done using the MicroLEIS-ALMAGRA model.

Land capability model (MicroLEIS-CERVANTANA model)

Prediction of general land use capability is a result of qualitative evaluations and overall interpretations of the following factors: relief, soil, erosion, bioclimatic deficit. Capability evaluation orders and classes are excellent (S1), good (S2),

moderate (S3) and marginal or null (N). Subclasses depend on limitation factors: Slope (t), Soil texture (I), Erosion risks(r) and Bioclimatic deficit (b). Applying the capability CERVATANA model, concerning slope, erosion, bioclimatic deficit and soil properties, Tables 1 and 2 reveal that these soils belong to orders S1, S2, S3 and N.

Table 1. Agro-ecological evaluation method of land capability classes using the MicroLEIS-CERVANTANA model.

Lan	d capability order and class	
Order		Class
c	S1	Excellent
3	S2	Good
	S3	Moderate
N	N	Marginal or Null

Table 2. Agro-ecological evaluation of land capability subclasses of the MicroLEIS-CERVANTANA model.

Land capability subclass		Limitation factor		
Slope	(t)	Slope		
		Useful depth		
	_	Texture class		
Soil	(i)	Stoniness and rockiness Drainage class		
	_			
	-	Salinity		
		Soil erodibility		
Erosion risks	(r)	Slope gradient		
	-	Vegetation density		
Disalimetic Jeffelt	(L)	Aridity degree		
Bioclimatic deficit	(b) -	Frost risks		

Land suitability model (MicroLEIS- ALMAGRA model).

Land suitability evaluation was applied using the MicroLEIS-ALMAGRA model (**De la Rosa et al., 1992 and De La Rosa et al., 2004**), which indicates suitability without respect to economic conditions. Suitability classes for each crop(Table 3) are: optimum suitability (S1), high suitability (S2), moderate suitability (S3), marginal suitability (S4), and no suitability (S5). The main soil limitations are: useful depth (p), texture (t), drainage (d), carbonate content (c), salinity (s), sodicity (a) and degree of

profile development (g). For each diagnostic criterion (or limiting factor), the evaluation results are presented in the form of a matrix, i.e. a two dimensional array with rows representing the soil characteristics and columns consisting of the soil units for which the evaluation was computed. The intersections of the two (i.e. the matrix cells) are considered as the results. The overall soil suitability of a soil component (unit) was assessed through the maximum limitation method where the suitability is decided upon the most limiting factor of soil properties.

Table 3. Land suitability classification index and ratings of the MicroLEIS program.

Class	Description	Rating (%)
S1	soils with optimum suitability	> 80
S2	soils with high suitability	< 80 > 60
S3	soils with moderate suitability	< 60 > 40
S4	soils with marginal suitability	< 40 > 20
S5	soils with no suitability	< 20 > 10

Results and discussion

Geomorphologic features.

According to **Abdel Rahman,**(1997), the landforms of Hala'ib and Shalateen are divided into three groups (Table 4 and Figure 4) of (1) Bahada

Plains (alluvial fans and deltas, alluvial plains, wadis, sand sheets, sand dunes and plains with rock outcrops), (2) Faulted Mountains and Hills (mountains, mountain-foot slopes, hills and hill-foot slopes), and (3) Coastal Forms (alkali flats).

Table 1	Gaomorphic	and Manning	units and their area	and percentages	of the total area
i abie 4.	Cieomorbnic	and wrapping i	unius and their area	and bercentages	oi the total area

Group	Geomorphologic unit	Mapping unit	Area (ha)	% of total area
	Alluvial fans and Deltas	AFD	145400	8.46
	Alluvial plains	AP	157700	9.18
Bahada Plains	Wadis	W	111300	6.48
Danada Pianis	Sand sheets	SS	155700	9.06
	Sand dunes	SD	17400	1.01
	Plains with rock out-crops	PR	117000	6.81
Faulted Mountains and Hills High rocky lands		HR	991000	57.68
Contain France	Alkali Flats	AF	19900	1.16
Coastal Forms	Beaches	В	2700	0.16
Total			1718100	100

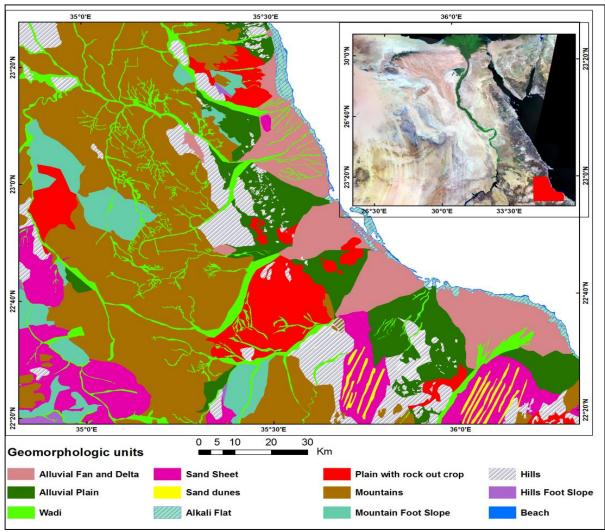


Fig. 4: Geomorphologic map of the Hala'ib and Shalateen area.

Land evaluation.

The fundamental principle of land evaluation is to estimate the potential of a land for different productive uses, taking in consideration the most suitable and appropriate way to achieve sustainability. The MicroLEIS system with an ALMAGRA model is an efficient decision support system for sustainable land use and management (**De La Rosa et al., 1992**).

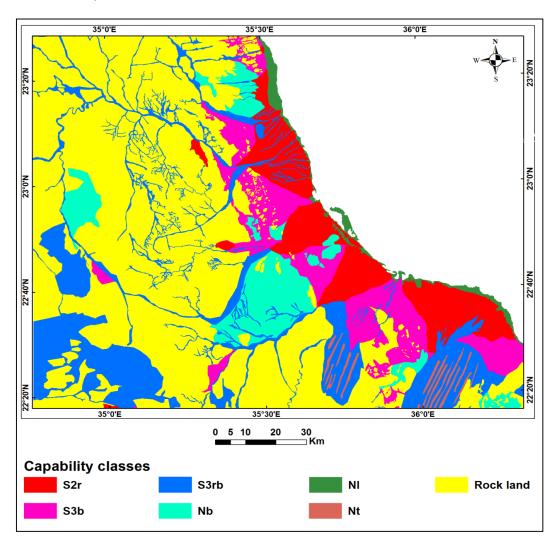
Land capability.

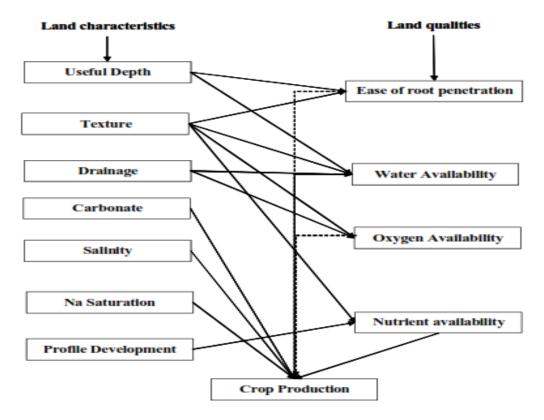
According to MicroLEIS CERVATANA model, lands of **Hala'ib and Shalateen** can be used for multiple purposes, mainly agriculture, pastures and forestry (Table 5). The outputs of the model were linked to the GIS modeling environment using database fields which have key attribute properties (Figure 5).

Table 5. Land capability classification for the Hala'ib and Shalateen, South East Egypt.

Land Capability Class	Land Capability	Landform	Dograa	Area		
Land Capability Class	Subclass	Landioini	Degree	ha	%	
S1		-	Excellent	0.00	0.00	
S2	S2r	Alluvial fans and Deltas	Good	145400	8.50	
S3	S3rb	Alluvial plain, Wadi and Sand sheet	Moderate	424700	24.72	
N	Nltb	Plain with rock outcrop, Alkali flat, Sand dunes and Beach	Marginal or Null	157000	9.14	
	Rocky land			991000	57.68	
		1718100	100.00			

Note: r= erosion risks, b=bioclimatic deficit.




Fig. 5: Land capability classes of Hala'ib and Shalateen, South East Egypt.

Land suitability.

MicroLEIS ALMAGRA model works interactively, comparing land characteristic values with the generalization levels designated for each suitability class. The classification is applicable to all lands in he Mediterranean Region. The suitability is based on analysis of factors affecting productivity of eight traditional crops: wheat, maize, potato, sugarbeet, alfalfa, peach, citrus and olive. The following steps show application of the model.

1-Diagnostic criteria of factors of effective soil depth (p), texture (t), carbonate content (c), salinity (s), sodium saturation (a) degree of profile development (g) and drainage (d) (Figure 6).

Farag O. Hassan *et al* .

Fig.6: General scheme of the Almagra model, showing the direct and indirect effects of some soil characteristics and soil qualities.

2-Calculation of the mean weighted value for each soil property (V) of the profile calculated by multiplying the summation of (Vi) for each horizon by horizon thickness (ti) divided by the profile depth (T) according to the following equation:

$$V = (\frac{\sum_{i=1}^{n} (vi \times ti)}{T})$$

3-After final preparation of data, the properties were supplied to the Almagra Model (available at http://www.evenor-tech.com/ microleis/microlei/microlei.aspx) (MicroLEIS web-Based Program, 2009) to run suitability classification for crops of wheat (W), maize (M), potato (P), and sugar-beet

(S); alfalfa (A) and peach (Pe), citrus fruits (C) and olive (O) as perennials, (Figures 7-14). The spatial analysis function in ArcGIS 10.1 was used to create thematic layers of the most constrained factors. The suitability classification is presented in Table 6 and soil suitability classes for the selected crop are listed in Table 7. Land suitability varied from "Suitable" (S2) (14.94% of total area) to "Not suitable" (S5) (66.65% of total area) for all selected crops. "Unsuitable" class lands are due to one or more of limitation factors of texture, salinity, drainage, depth, sodicity, and CaCO₃ content.

Table 6. Factors and limitations used in land suitability of study area.

	Factor	Lir	nitation	Suitability class			
Symbol	Definition	Symbol	Definition	Symbol	Definition		
a	Sodium saturation	1	None	S 1	Highly suitable		
c	Carbonate	2	Slight	S2	Suitable		
d	Drainage	3	Moderate	S 3	Moderately suitable		
g	Profile development	4	Severe	S4	Marginally suitable		
p	Useful depth	5	Very severe	S5	Not suitable		
S	Salinity						
t	Texture						

Table 7. Land suitability classes and limiting factors for study area.

	Annual crop			Semiannual crop	Perennial crop		тор	A #00	
Landform	Wheat (W)	Maize (M)	Potato (P)	Sugar beet (S)	Alfalfa (A)	Peach (Pe)	Citrus (C)	Olive (O)	- Area (%)
Wadi	S2tdc	S2td	S2td	S2tdc	S2tdc	S2dsg	S2dsg	S2dcs	6.48
Alluvial Fans &Deltas	S3t	S3t	S3t	S3t	S3t	S2td	S2td	S2tdc	8.46
Alluvial Plains	S4t	S4t	S4t	S4t	S4t	S3t	S3t	S3t	9.18
Alkali Flats	S5s	S5sa	S5sa	S4tds	S4tds	S5ds	S5ds	S5ds	1.16
Sand Sheets	S4t	S4t	S4t	S4t	S3tc	S2tdc	S3t	S3t	9.06
Plains with rock outcrops	S5t	S5t	S5t	S3t	S5t	S5t	S5t	S4ptd	6.80

S2 (suitable),S3(moderately suitable),S4 (marginally suitable),S5(not suitable), p(useful depth), t (texture), d (drainage), c (carbonate), s (salinity), a (sodium saturation), and g (profile development).

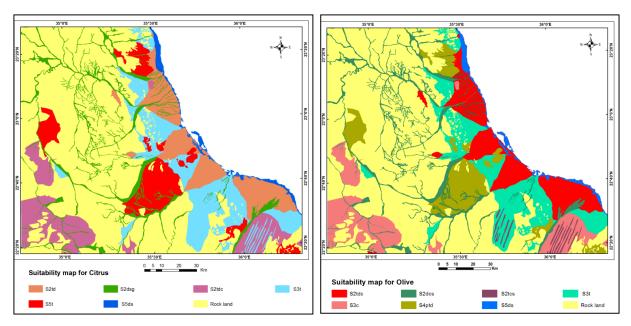


Fig. 7: Land suitability map for citrus.

Fig. 8: Land suitability map for Olive.

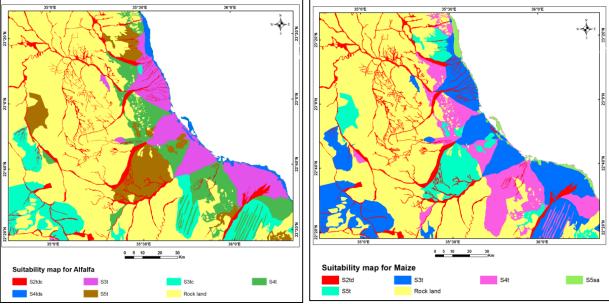


Fig. 9: Land suitability map for Alfalfa.

Fig.10: Land suitability map for Maize.

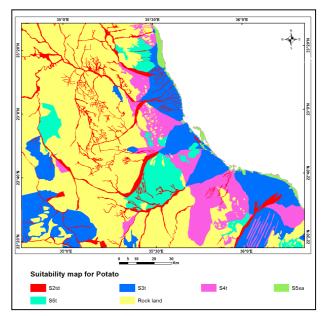


Fig. 11: Land suitability map for Potato.

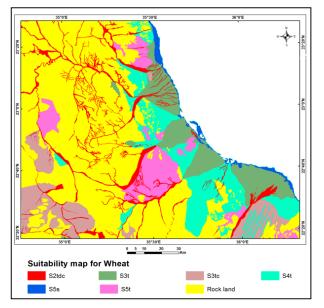


Fig. 13: Land suitability map for Wheat

Conclusion

Remote sensing and GIS were manipulate and quantitatively evaluates land capability and suitability of Hala'ib and Shalateen regions, South Eastern Desert of Egypt east of Red Sea. Results indicate a possibility of agricultural expansion . About one third of the area is good to moderately good for agriculture utilization. The main capability limitations are slope, soil, erosion and bioclimatic deficit. Land suitability shows suitability for eight growing crops: wheat, maize, potatoes, sugar beet, alfalfa, peach, citrus, and olive. The regions can benefit if development is planned and executed in a manner that takes advantage of the natural resources without threatening their quality.

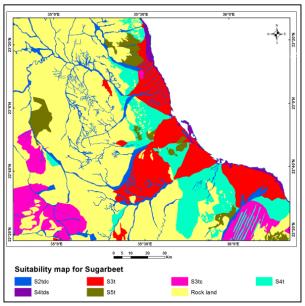


Fig. 12: Land suitability map for Sugarbeet

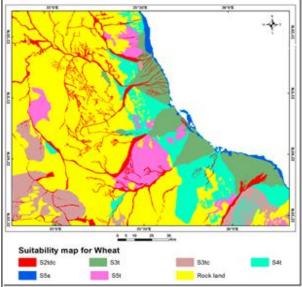


Fig. 14: Land suitability map for Peach.

References

Abd-El-Kawy, O. R., Ismail, H.A., Rod, J. K. and Suliman, A. S. 2010. A developed GIS-based land evaluation model for agricultural land suitability assessments in arid and semi-arid regions. Res. J.Agric. Biol. Sci. 6(5): 589-599.

Abdel-Rahman, M.A.E., Natarajan, A. and Hegde, R. 2016. Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. Egypt J. Rem. Sens. Space Sci. 19:125-141.

Abdel Rahman, S.I. 1997.Soil and agriculture potentiality of Mersa-Shaab area, South-eastern

- Desert of Egypt. Proc.Geoinform.Sust.Dev., Int. Tnst. Geoinf. Earth Sci (ITC), Enschede, Netherlands 7(2): 17-21.
- Bandyopadhyay, P. C. 2007. Soil analysis. Amazon Co. London, UK.
- De-la-Rosa, D. and Moreira, J.M. 1987. Ecological evaluation natural resources of Andalusia.Pub.AMA, JuntaAndalucía, Seville, Spain.
- De-la-Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M. and de la Rosa Jr, D. 2004.A evaluation decision support system (MicroLEIS DSS) for agricultural soil protection with special reference to the Mediterranean region. Environ. J. Mod. Soft.19(10): 929-942.
- De-la-Rosa, D., Moreno, J.A., Garcia, L.V. and Almorza, J. 1992. MicroLEIS: A microcomputerbased Mediterranean land evaluation information system. Soil Use and Manag. 8: 89-96
- Dent, D. and Young, A. 1981. Soil survey and land evaluation, George Allen and Unwin Ltd., London, UK.
- EGPA.1987.CONCORD Maps: Geological map of Egypt, scale 1:50000. Egyptian General Petroleum Authority (EGPA), Cairo, Egypt.
- Ekanayake, G.K. and Dayawansa, N. D. K. 2003.Land suitability identification for a production forest through GIS Technique. J. Geos. Wor.:1-28.
- Elaalem, M. 2010. Application of land evaluation techniques in Jeffara Plain in Libya using Fuzzy Methods.PhD, Univ. Leicester, UK.
- El-Alfi, Z. 1997. Geology of Hala'ib triangular region, south of the Eastern Desert.Institute of Afric.Res. Studies. Cairo University, Egypt. (in Arabic).
- El-Rakaiby, M., Ramadan, T., Mosy, A. and Ashmawe, Μ. 1996.Geological geomorphological studies of Hala'iband Shalatein regions and their relation with surface and subsurface water.Report National Authority for remote Sensing and Space Science (NARSS), Cairo, Egypt.
- El-Taweel, M.I. **2006.**Land resources wadiHodeinarea, Southeastern Desert of Egypt. The 2nd Int. Conf. Water Res. Arid Environ.26-29 November 2006, Cairo, Egypt.
- EMA. 2010. Climatic atlas of Egypt. Egypt Meteorological Authority (EMA). Cairo, Egypt.
- FAO. 1976. A Framework for land evaluation: Soils Bull.32, Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy.
- FAO. 1983. Guidelines: Land evaluation for rained agriculture, Soil Bul. 52, Food and Agriculture Organization (FAO)of the United Nations, Rome,
- FAO. 1985. Guidelines: land evaluation for irrigated agriculture, Soil Bul. 55, Food and Agriculture Organization (FAO)of the United Nations, Rome, Italy.

- **FAO. 2006.** Guidelines for soil description. 4thEd. Food and Agriculture Organization (FAO)of the United Nations, Rome, Italy.
- Kalogirou, S. 2002. Expert systems and GIS: An application of land suitability evaluation. Comp. Environ. Urb.Sys. 26(2-3): 89-112.
- Lillesand, T.M. and Kiefer, R.W. 2007. Remote sensing and image interpretation, 5th Ed., John Wiley, NY, USA.
- MicroLEIS web-Based Program.2009. Available http://www.evenor-tech.com/ microleis/ microlei/ microlei.aspx; accessed 02/16/2010.
- Mulder, V.L., de-Bruin, S., Schaepman, M.E. and Mayr, T.R. 2011. The use of remote sensing in soil and terrain mapping: A Review. Geoderma, 162(1-2):1-19.
- Pereira, J. M. C. and Duckstein, L. 1993. A multiple criteria decision-making approach to GIS-based and land suitability evaluation. Int. J. Geogr. Inf. Sys. 7:407-424.
- Rossiter, D.G. 1990. ALES: A framework for land evaluation using a microcomputer. Soil Use Manag. 6(1):7-20.
- Rossiter, D.G. 1996. A theoretical framework for land evaluation. Geoderma 72(3-4):165-190.
- Rozentstein, O., Siegal, Z., Blumberg, D.G. and Adam, J. 2016. Investigating the backscatter contrast anomaly in Synthetic Aperture Radar (SAR) imagery of the dunes along the Israel-Egypt. Int. J. Appl. Earth Obser.Geoinf. 46:13-
- Sadeghi, M., Jones, B.S. and Philpot, D.W. 2015. A linear physically-basedmodel for remote sensing of soil moisture using short wave infrared bands. Rem. Sens. Environ. 164:66-76.
- Said, R. 1990. The geology of Egypt. A.A. Balkema, Rotterdam, Netherlands.
- Sayed, A.S.A. 2006. Pedological studies on soils of Esh-Milahahdepression, Red sea region, Egypt. MSc, Fac. Agric., Al-Azhar Univ., Cairo, Egypt.
- Steiner, F.W., Holtsberg, J.N., Keller, M.P. and Mattson, S.M. 2000. Lyso-phosphatidic acid induction of neuronal apoptosis and necrosis Ann. NY Acad. Sci. 905:132-141.
- Sys, C., Van-Ranst, E. and Debaveye, J. 1993. Land evaluation, part III: Crop requirements. Int. Training Centre (ITC) for Post-Graduate Soil Scientists. Ghent University, Ghent, Belgium.
- Svs, Ir. C. 1985. Land evaluation. State Univ. Gent, Belgium.
- Sys, Ir. C., Van Ranst, E. and Debaveye, J. Ir. 1991. Methods of land evaluation. Training Center (ITC) for post-graduate soil scientists (part II). Univ., Ghent, Belgium.
- Taghizadeh-Mehriardi. R., Minasny. Sarmadian, F. and Malone, B.P. 2014. Digital mapping of soil salinity in Ardakan region, central Iran.Geoderma 213:15-28.

Farag O. Hassan et al.

- **USDA. 2004.** Soil survey laboratory methods manual. Soil Survey, United State Department of Agriculture (USDA), Rep. No. 42, Version 4.0.
- **USDA. 2014.** Keys to soil taxonomy. 11th.Ed.United State Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS)
- Van Lanen, H. A. J. 1991. Qualitative and quantitative physical land evaluation: an operational approach. PhD, Proefschrift Wageningen, Netherlands.
- Várallyay, G. 2011. Challenge of sustainable development to a modern land evaluation system, *In*Teth, G and Nemeth, T. Eds., Land quality and land use information in the European Union Keszthely, Hungary.
- **Zhang, H., Liu, L. and Liu, H. 2011.** Mountain ground movement prediction caused by mining based on BP-neural network. J. Coal Sci. Eng. (China) 17(1):12-15.

تقييم وملائمة الاراضى بمنطقة حلايب وشلاتين - مصربالاستخدام المتكامل لتقنيات نظم المعلومات الجغرافية و الاستشعار من بعد

فرج عمر حسن 1 و على احمد عبدالسلام 2 و هبه شوقى عبدالله راشد 2 و عبدالله محمد فايد 1 الهيئة القومية للاستشعار من بعد وعلوم الفضاء (نارس)، القاهرة، مصر 2 قسم الاراضى والمياه، كلية الزراعة بمشتهر، جامعة بنها، مصر

تم تقييم ملائمة الارض وقدرتها الانتاجية بالاستخدام المتكامل بين تقنيات الاستشعار من بعد ونظم المعلومات الجغرافية بمنطقة حلايب وشلاتين التى تقع في جنوب شرق الصحراء الشرقية بمصر. وهي واحدة من المناطق ذات اولوية عالية النتمية.وقد اتاحت الدراسة الحالية انتاج خرائط رقمية لملائمة الارض للمحاصيل المختارة. وقد تم اخذ عشرة قطاعات تربة ممثلة للوحدات الجيومورفولوجية المختلفة بمنطقة الدراسة. الخرائط الطبوغرافية ونموذج المرتفعات الرقمية (DEM) بالاضافة الى الزيارات الميدانية ومنها تم انتاج الخرائط الجيومورفولوجية. وتم التعرف على ثمانية وحدات جيومورفولوجية رئيسية وهي كالتالي (1) الاودية، (2) المراوح الفيضية و الدلتاوات، (3) السهول الفيضية، (4) الفرشات الرملية، (5) الكثبان الرملية، (6) السبخات، (7) سهول النتوات الصخرية و (8) المرتفعات العالية. استخدم نموذج السيرفاتانا في برنامج الميكروليز لتقييم القدرة الانتاجية للتراضي دات قدرة متوسطة و 9.1 % من الاراضي دات قدرة متوسطة و 9.1 % من الاراضي هامشية القدرة.وكانت نسبة الأراضي الغير صالحة 57.7 % . ومن اهم محددات القدرة الانتاجية للاراضي هي الصخريةوالملوحة ومخاطر النحر.واستخدم انموذج الماجرا لتحديد الانتاج الامثل لمحاصيل القمح، البطاطس، الذرة وبنجر السكر (كنباتات حولية)، والبرسيم (كنبات نصف حولي) و الخوخ، اشجار الحمضيات والزيتون (كاشجار معمرة). ومن اهم المحددات هي واحدة او اكثر الملوحة ، الصودية، ضحالة عمق القطاع وانخفاض الخصوبة.